Accurate estimate of the critical exponent nu for self-avoiding walks via a fast implementation of the pivot algorithm.
نویسنده
چکیده
We introduce a fast implementation of the pivot algorithm for self-avoiding walks, which we use to obtain large samples of walks on the cubic lattice of up to 33x10{6} steps. Consequently the critical exponent nu for three-dimensional self-avoiding walks is determined to great accuracy; the final estimate is nu=0.587 597(7). The method can be adapted to other models of polymers with short-range interactions, on the lattice or in the continuum.
منابع مشابه
A faster implementation of the pivot algorithm for self-avoiding walks
The pivot algorithm is a Markov Chain Monte Carlo algorithm for simulating the selfavoiding walk. At each iteration a pivot which produces a global change in the walk is proposed. If the resulting walk is self-avoiding, the new walk is accepted; otherwise, it is rejected. Past implementations of the algorithm required a time O(N) per accepted pivot, where N is the number of steps in the walk. W...
متن کاملar X iv : h ep - l at / 9 21 10 62 v 1 2 7 N ov 1 99 2 Algebraic Techniques for Enumerating Self - Avoiding Walks on the Square Lattice
We describe a new algebraic technique for enumerating self-avoiding walks on the rectangular lattice. The computational complexity of enumerating walks of N steps is of order 3 N/4 times a polynomial in N , and so the approach is greatly superior to direct counting techniques. We have enumerated walks of up to 39 steps. As a consequence, we are able to accurately estimate the critical point, cr...
متن کاملCut-and-permute algorithm for self-avoiding walks in the presence of surfaces
We present a dynamic nonlocal hybrid Monte Carlo algorithm consisting of pivot and “cut-and-permute” moves. The algorithm is suitable for the study of polymers in semiconfined geometries at the ordinary transition, where the pivot algorithm exhibits quasi-ergodic problems. The dynamic properties of the proposed algorithm are studied. The hybrid dynamics is ergodic and exhibits the same optimal ...
متن کاملEnumeration of self-avoiding walks on the square lattice
We describe a new algorithm for the enumeration of self-avoiding walks on the square lattice. Using up to 128 processors on a HP Alpha server cluster we have enumerated the number of self-avoiding walks on the square lattice to length 71. Series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and mean-square distance of monomers from the end points h...
متن کاملTubular phase of self-avoiding anisotropic crystalline membranes.
We analyze the tubular phase of self-avoiding anisotropic crystalline membranes. A careful analysis using renormalization group arguments together with symmetry requirements motivates the simplest form of the large-distance free energy describing fluctuations of tubular configurations. The non-self-avoiding limit of the model is shown to be exactly solvable. For the full self-avoiding model we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 104 5 شماره
صفحات -
تاریخ انتشار 2010